Sketching for Large-Scale Learning of Mixture Models

<u>N. Keriven^{*§}</u> A. Bourrier[†] R. Gribonval[§] P. Pérez[‡]

* Université Rennes 1, France
 § INRIA Rennes-Bretagne Atlantique, France
 † Gipsa-Lab, St-Martin-d'Hères, France
 ‡ Technicolor, Cesson Sévigné, France

École d'été Peyresq, Juillet 2016

Outline

4 Theoretical guarantees ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
●00	000000	000	00000	
Paths to	Compressive	Learning		

Objective

Fit density p_{Θ} on a large database $(\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$.

IntroductionMethod
boocooResults
boocooTheoretical guarantees ?ConclusionApproach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From $\mathbf{y} pprox \mathbf{M} \mathbf{x} \in \mathbb{R}^m$ recover vector $\mathbf{x} \in \mathbb{R}^n$

- Linear $\mathbf{M} \in \mathbb{R}^{m \times n}$ with m < n
- Typical assumption: sparse signal $\mathbf{x} = \sum_{k \in \Gamma} x_k \mathbf{e}_k$.

Generalized Compressive Sensing

From $\mathbf{z} \approx \mathcal{A}p \in \mathbb{C}^m$ recover probability distribution $p \in \mathcal{P}$

Must define:

- Linear operator $\mathcal{A}:\mathcal{P}\mapsto\mathbb{C}^m$
- Generalized "sparsity": $p_{\Theta, \alpha} = \sum_{k=1}^{K} \alpha_k p_{\theta_k}$
 - Infinite/continuous dictionary !

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Application to Compressive Learning

From theoretical Generalized CS...

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{Alg.} p_{\Theta, \alpha}$$

...to practical Compressive Learning:

$$\hat{p} = \frac{1}{N} \sum_{i} \delta_{\mathbf{x}_{i}} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{Alg.} p_{\hat{\Theta},\hat{\mathbf{a}}}$$

where $(\mathbf{x}_1, ..., \mathbf{x}_N) \overset{i.i.d.}{\sim} p$.

Questions:

- Reconstruction algorithm ?
- Choice of sketching operator ${\cal A}$?
- Empirically/theoretically valid ?

Outline

4 Theoretical guarantees ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	●00000	000	00000	
Approach				

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\mathsf{Alg.}} p_{\Theta, \alpha}$$

Cost function

$$\min_{\Theta, \alpha} \|\mathbf{z} - \mathcal{A} p_{\Theta, \alpha}\|_2$$

• Similar to
$$\min_{\mathbf{x}: \|\mathbf{x}\|_0 \leq s} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2$$
 in CS.

Need approximate algorithms !

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	00000	000	00000	

Proposed Algorithm: quick overview

- Greedy : progressively add components $p_{oldsymbol{ heta}_k}$
- Inspired by OMP, adapted to continuous settings
- Two versions
 - Compressive Learning OMP (CLOMP)
 - CLOMPR (with Replacement): slower but better results

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	oo●ooo	000	00000	
What is le	eft ?			

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha} = \sum_{k} \alpha_{k} p_{\theta_{k}}$$

To perform CLOMP(R), Ap_{θ} and $\nabla_{\theta}Ap_{\theta}$ must have a closed-form expression.

• Here:

• $oldsymbol{ heta} = (oldsymbol{\mu}, oldsymbol{\sigma})$ and $p_{oldsymbol{ heta}}$: GMMs with diagonal covariance

- Soon-to-be-released toolbox:
 - K-means
 - full GMMs
 - GLLiM [Deleforge 2014]
 - α -stable (in progress)
 - User-defined ! (black-box implementation)

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Sketching operator

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Random Sampling of the characteristic function [Bourrier 2013]

Given $(oldsymbol{\omega}_1,...,oldsymbol{\omega}_m)\in\mathbb{R}^n$,

$$\mathcal{A}p = \left[\mathbb{E}_{\mathbf{x}\sim p}(e^{\mathbf{i}\boldsymbol{\omega}^T\mathbf{x}})\right]_{j=1,\dots,m}$$

- Closed-form for many models !
- Analog to Random Fourier Sampling: $(oldsymbol{\omega}_1,...,oldsymbol{\omega}_m) \stackrel{i.i.d.}{\sim} \Lambda$

• $\hat{\mathbf{z}} = \left[\frac{1}{N}\sum_{i} e^{i\boldsymbol{\omega}_{j}^{T}\mathbf{x}_{i}}\right]_{j=1,...,m}$ easily computable (distributed, GPU, streaming...)

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

• Classical choice in kernel methods [Sutherland 2015]

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution Approach 2 Proposed:

• Partial preprocessing to compute the appropriate "scaling"

The proposed distribution

- Yields better precision in the reconstruction
- Is $20 \times$ to $100 \times$ faster to design

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	00000●	000	00000	
–				

To summarize

$$\hat{p} \xrightarrow{\mathcal{X} \to \Lambda \to \mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

Given a database $\mathcal{X} = (\mathbf{x}_1, ..., \mathbf{x}_N) \in \mathbb{R}^n$, m, K:

- Design ${\cal A}$
 - ullet Partial preprocessing to choose the frequency distribution Λ
 - Draw m frequencies $(oldsymbol{\omega}_1,...,oldsymbol{\omega}_m)\in\mathbb{R}^n$
- Compute $\hat{\mathbf{z}} = \frac{1}{\sqrt{m}} \left[\frac{1}{N} \sum_{i} e^{\mathbf{i} \boldsymbol{\omega}_{j}^{T} \mathbf{x}_{i}} \right]_{j=1,\dots,m}$
 - GPU, distributed computing, etc.
- Estimate a K-GMM $p_{\Theta, \alpha}$ from $\hat{\mathbf{z}}$ using CLOMP(R).

Outline

4 Theoretical guarantees ?

Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT [Bourrier 2013]. KL-div (lower is better), n = 10, m = 5(2n + 1)K.

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	0●0	00000	
Memory II	sage and co	omputation	time	

• Remember : Sketching easily done on GPU/cluster

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	00●	00000	
Proof of a	concept sp	eaker verif	ication	

- NIST2005 database with MFCCs: $N = 2 \cdot 10^8$
- A large database indeed enhances the results
- Limitations are observed for large K : difficult "sparse approximation" task of a non-sparse distribution

Outline

Introduction	Method	Results	Theoretical guarantees ?	Conclusior
000	000000	000	●0000	
			2	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

• CLOMP(R) attempts to solve $\min_{\Theta, \alpha} \|\mathbf{z} - \mathcal{A}p_{\Theta, \alpha}\|_2$

• Difficult to obtain guarantees for CLOMP(R): non-convex, random...

Introduction	Method	Results	Theoretical guarantees ?	Conclusio
000	000000	000	●0000	
-			â	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{CLOMP(R)} p_{\Theta, \alpha}$$

• CLOMP(R) attempts to solve $\min_{\Theta, \alpha} \|\mathbf{z} - \mathcal{A}p_{\Theta, \alpha}\|_2$

- Difficult to obtain guarantees for CLOMP(R): non-convex, random...
- More fundamentally: if we were able to exactly solve

$$\min_{p\in\Sigma} \|\mathbf{z} - \mathcal{A}p\|_2,$$

with Σ "low-dimensional" set of distribution (e.g. $K\mbox{-sparse}$ GMMs), do we have any guarantee ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	
			2	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

• Does z contains "enough" information to recover $p \in \Sigma$?

14/18

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	○●○○○	
			2	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

• Does z contains "enough" information to recover $p \in \Sigma$? • Is it stable if $p \notin \Sigma$?

14/18

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	○●○○○	
			2	

$$p \xrightarrow{\mathcal{A}} \mathbf{z} = \mathcal{A}p \xrightarrow{\text{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\mathbf{z} - \mathcal{A}p\|_2$$

- Does z contains "enough" information to recover $p \in \Sigma$?
- Is it stable if $p \notin \Sigma$?
- Is it stable to use $\hat{\mathbf{z}}$ instead of \mathbf{z} ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusio
000	000000	000	००●००	

$$\hat{p} \xrightarrow{\mathcal{A}} \hat{\mathbf{z}} = \mathcal{A}\hat{p} \xrightarrow{\mathsf{Best algo. possible}} \bar{p} \in \arg\min_{p \in \Sigma} \|\hat{\mathbf{z}} - \mathcal{A}p\|_2$$

Main result

(for a compact Σ , under some hypothesis on Λ)

• W.h.p. on
$$(\mathbf{x}_1,...,\mathbf{x}_N) \stackrel{i.i.d.}{\sim} p^*$$
 and $(\boldsymbol{\omega}_1,...,\boldsymbol{\omega}_m) \stackrel{i.i.d.}{\sim} \Lambda$

$$\gamma_{\Lambda}(p^*, \bar{p}) \leq 5d_{TV}(p^*, \Sigma) + \mathcal{O}\left(N^{-\frac{1}{2}}\right) + \eta,$$

- γ_{Λ} "kernel" metric [Sriperumbudur 2010]
- d_{TV} total variation distance between p^* and the model Σ η additive error in m

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Application to GMMs with compact set of parameters.

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Application to GMMs with compact set of parameters.

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible !
• Global error in $\mathcal{O}\left(N^{-\frac{1}{2}} + m^{-\frac{1}{2}}\right)$: "compressive" approach ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	

Application to GMMs with compact set of parameters.

•
$$K = 1$$
 (toy):
• $\eta = \mathcal{O}(\beta^{-m})$: Good !
• $K \ge 2$:
• $\eta = \mathcal{O}\left(m^{-\frac{1}{2}}\right)$: Worst possible !
• Global error in $\mathcal{O}\left(N^{-\frac{1}{2}} + m^{-\frac{1}{2}}\right)$: "compressive" approach ?
• **Conjecture**: it is in fact much better !

- $\eta = \mathcal{O}(\beta^{-m})$ for *K*-GMMs with fixed known Σ and $\|\mu_k \mu_{k'}\|_2 \ge \mathcal{O}(\ln k)$
 - May need more layers for unknown Σ ("sketching the sketches...") : CNN !
- Can relate the "kernel" metric γ_Λ to traditional excess risk in Machine Learning !

Outline

4 Theoretical guarantees ?

Introduction	Method	Results	Theoretical guarantees ?	Conclusion
000	000000	000	00000	
Conclusion				

Summary

Effective method to learn GMMs from a sketch, using greedy algorithms and an efficient heuristic to design the sketching operator. Empirical and theoretical motivations.

More...

- Faster algorithm for GMM with large K
- More on theoretical guarantees

Future Work

- Application to other Mixture Models (α-stable...)
- Generalized theoretical guarantees
- Application to other kernel methods [Sutherland 2015] (classification...)

Questions ?

Keriven et al., Sketching for Large-Scale Learning of Mixture Models, *ICASSP 2016*

Keriven et al., Sketching for Large-Scale Learning of Mixture Models, *arXiv:1606.02838*

Soon : sketching toolbox